Дано: Трапеция АВСD, АВ=СD. ВD - диагональ. Угол СВD=углу BDA (накрест лежащие углы при параллельных ВС и АD и секущей ВD), угол АВD=углуCВD (т.к. ВD - биссектриса). Следовательно угол АВD= углу ВDА, т.е. треугольник АВD равнобедренный (углы при основании равны) и AB=AD, так как трапеция равнобедренная можно продолжить АВ=AD=СD. Обозначим неизвестные стороны через х. Поскольку известен периметр и меньшая сторона, составим уравнение 3х+3=42 3х=39, х=13. Значим боковые стороны и большее основание = 13 см. Найдем теперь высоту. Опустим перпендикуляр к большему основанию ВН. Получим прямоугольный треугольник АВН. АН= (13-3):2=5. Тогда по Т.Пифагора ВН²=АВ²-АН² ВН²=13²-5² ВН²=144 ВН=12. ответ; высота данной равнобочной трапеции равна 12 см.
АН= (13-3):2=5. Тогда по Т.Пифагора ВН²=АВ²-АН² ВН²=13²-5² ВН²=144
ВН=12.
ответ; высота данной равнобочной трапеции равна 12 см.