1) Так как, согласно условию задачи, АС = СD, то это означает, что треугольник ACD является равнобедренным, а сторона AD является основанием равнобедренного треугольника.
2) Так как точка М является серединой противоположной стороны АD, то это означает, что СМ является медианой, так как, согласно определению: медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, противоположной этой вершине.
3) Медианы равнобедренного треугольника обладают следующими свойствами: в равнобедренном треугольнике две медианы, проведенные к равным боковым сторонам треугольника, равны, а третья медиана, проведённая к основанию, одновременно является высотой, а также биссектрисой угла, из которого она проведена.
Это означает, что медиана СМ одновременно является высотой.
4) Согласно определению высоты: высота – это линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.
Следовательно, высота СМ перпендикулярна AD, - что и требовалось доказать.
См. Объяснение
Объяснение:
Доказательство.
1) Так как, согласно условию задачи, АС = СD, то это означает, что треугольник ACD является равнобедренным, а сторона AD является основанием равнобедренного треугольника.
2) Так как точка М является серединой противоположной стороны АD, то это означает, что СМ является медианой, так как, согласно определению: медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, противоположной этой вершине.
3) Медианы равнобедренного треугольника обладают следующими свойствами: в равнобедренном треугольнике две медианы, проведенные к равным боковым сторонам треугольника, равны, а третья медиана, проведённая к основанию, одновременно является высотой, а также биссектрисой угла, из которого она проведена.
Это означает, что медиана СМ одновременно является высотой.
4) Согласно определению высоты: высота – это линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.
Следовательно, высота СМ перпендикулярна AD, - что и требовалось доказать.