Кут ABC — прямий, ДАВЕ= ZEBF=2FBC, променi BD і ВК - бісектриси кутів ABE i FBC відповідно.
Знайдіть кут DBK

086Alex 086Alex    2   29.09.2020 21:23    1

Ответы
СашкаО СашкаО  29.10.2020 21:23

∟DBK = 60°

Объяснение:

решение вопроса

+4

Дано: ∟ABC - прямий (∟ABC = 90°). ∟ABE = ∟EBF = ∟FBC.

BD - бісектриса ∟ABE, ВК - бісектриса ∟FBC. Знайти: ∟DBK.

Розв'язання:

Нехай ∟ABE = ∟EBF = ∟FBC = х.

За аксіомою вимірюваиня кутів маємо:

∟ABC = ∟ABE + ∟EBF + ∟FBC.

Складемо i розв'яжемо рівняння:

х + х + х = 90; 3х = 90; х = 90 : 3; х = 30. ∟ABE = ∟EBF = ∟FBC = 30°.

За означениям бісектриси кута маємо:

∟ABD = ∟DBE = 30° : 2 = 15°; ∟CBК = ∟KBF = 30° : 2 = 15°.

За аксіомою вимірювання кутів маємо:

∟ABC = ∟ABD + ∟DBK + ∟KBC, ∟DBK = ∟ABC - (∟ABD + ∟KBC),

∟DBK = 90° - (15° + 15°) = 90° - 30° = 60°. ∟DBK = 60°.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия