Коло вписане в прямокутний трикутник abc дотикається до гіпотенузи ab у точці f. знайдіть радіус вписаного кола якщо ac=9 см. af: fb=2: 3​

Римская1 Римская1    3   01.05.2019 14:21    2

Ответы
Colin03 Colin03  30.09.2020 14:56

Відповідь:

3 см

Пояснення:

Відомо, що коло, вписане в трикутник, точками дотику до сторін відділяє рівні відрізки зі сторони кожної вершини.

Також відомо, що висоти - радіуси, проведені із центра такого кола в прямокутному трикутнику до катетів утворюють з відрізками від точок дотику до вершини прямого кута квадрат зі стороною, рівною радіусу вписаного кола.

Згідно з умовою, позначимо AF як 2x, FB як 3x, тоді

r=9-2x

За теоремою Піфагора складемо рівняння:

9²+ (9-2х+3х)²=(2х+3х)²

81+(9+х)²=25х²

81+81+18х+х²-25х²=0

24х²-18х-162=0

4х²-3х-27=0

Дискрімінант: Д=9+4*4*27=441=21²

х₁=(3+21)/8=3 см

х₂=(3-21)/8=-2.25 см (не підходить).

Тоді r=9-2·3=3 см


Коло вписане в прямокутний трикутник abc дотикається до гіпотенузи ab у точці f. знайдіть радіус впи
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия