Катет BC прямоугольного треугольника ABC равен 10 . Через вершину прямого угла C проведена прямая, от которой вершина A удалена на 3 , а вершина B — на 8 . Определите квадрат гипотенузы AB .

Hamrod Hamrod    3   07.10.2020 15:03    4

Ответы
тимур617 тимур617  07.10.2020 16:01

(см. объяснение)

Объяснение:

Первый

Пусть ∠ECB=a. Тогда, т.к. ∠ACB=90°, то 90+\alpha+\angle ACH=180\;=\;\angle ACH=90-\alpha. Соответственно \angle HAC=90-(90-\alpha)=\alpha. Значит треугольник AHC подобен треугольнику BEC по двум углам (∠AHC=∠BEC=90° и ∠ECB=∠HAC=\alpha). Из подобия следует, что \dfrac{AH}{CE}=\dfrac{AC}{BC},\;=\dfrac{3}{6}=\dfrac{AC}{10},\;=AC=5. Тогда по теореме Пифагора для ΔABC: AB^2=25+100=125.

Приведу решение, в котором используется только теорема Пифагора:

Пусть AC=x. AH=3, а BE=8. Тогда из прямоугольного треугольника AHC AC^2=x^2-9,\;=AC=\sqrt{x^2-9}. Из прямоугольного треугольника BCE CE=\sqrt{100-64}=6. Значит HE=\sqrt{x^2-9}+6. Проведем AF - высоту из точки A на BE. Тогда AFEH - прямоугольник => AF=HE=\sqrt{x^2-9}+6. По теореме Пифагора для прямоугольного треугольника AFB (\sqrt{x^2-9}+6)^2+25=AB^2. Но с другой стороны из прямоугольного треугольника ABC AB^2=x^2+100, т.е. получили уравнение (\sqrt{x^2-9}+6)^2+25=x^2+100, откуда x=5, а значит AC=5. Тогда AB^2=25+100=125.

Задача решена!


Катет BC прямоугольного треугольника ABC равен 10 . Через вершину прямого угла C проведена прямая, о
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия