Касательные в точках a и b к окружности с центром o пересекаются под углом 68 градусов. найти угол abo.

chechia chechia    3   25.06.2019 23:50    3

Ответы
Проведем отрезок ОС
Треугольники ACO и BCO - прямоугольные
То есть углы CAO и CBO равны по 90° каждый.
OC - является биссектрисой для угла ACB  следовательно углы ACO и BCO равны 68/2=34
180°=∠OAC+∠ACO+∠COA
∠COA=180°-90°-34=56
Аналогично, для треугольника BCO получим, что ∠COB=56
∠AOB=∠COA+∠COB=56+56=112
Проведем отрезок AB и рассмотрим треугольник ABO.
По теореме о сумме углов треугольника запишем:
180°=∠AOB+∠BAO+∠ABO
180°=112°+∠BAO+∠ABO
ABO равнобедренный треугольник, т.к. OA и OB - радиусы окружности и, поэтому, равны. Следовательно ∠ABO=∠BAO (по свойству равнобедренного треугольника). И получается, что ∠ABO=∠BAO=68/2=34
ПОКАЗАТЬ ОТВЕТЫ
дара23 дара23  02.10.2020 11:43
180-68=112
(180-112)/2=34
Такой вроде ответ☺
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия