Какие из данных утверждений верны? запишите их номера. 1) если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны. 2) в любом прямоугольнике диагонали взаимно перпендикулярны. 3) у равностороннего треугольника есть центр симметрии.
Задание решено Пользователем Tgz Знаток .
Исправлена опечатка.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
ВЕРНО.
Первый признак подобия треугольников: если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
В условии говорится про три угла, так что два соответственно равны двум другим тем более.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
НЕВЕРНО.
Это утверждение справедливо только для квадрата. В произвольном прямоугольнике диагонали не перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
НЕВЕРНО.
У равностороннего треугольника есть оси симметрии. Центра симметрии нет.