Изобразите на клетчатой бумаге квадрат abcd со сторонами в 10 шагов сетки пусть m середина cd, n середина ad, и отрезки am и bn пересекаются в точке f. объясните почему fm равняется 1,5 умножить на af.

vladvoroxov vladvoroxov    2   27.09.2019 02:20    8

Ответы
polycov200412 polycov200412  08.10.2020 21:41
ДАНО: АВCD - квадрат ; АВ = 10 ; СM = MD = 5 ; AN = ND = 5 ; F - точка пересечения прямых АМ и ВN

ДОКАЗАТЬ: FM = 1,5 × AF

_______________________________

РЕШЕНИЕ:

Заметим (см. рис. 2), что треугольники АВN и  AMD равны по двум катетам ( АВ = АD - стороны квадрата , АN = MD - по условию ). Повернём  ВАN на угол 90° против часовой стрелке и совместим точку А с точкой D. Сторона  MD совместится со стороной AN, а сторона AD — со стороной AB. Поскольку после поворота на 90° стороны AM и BN совместились, значит, до поворота угол между ними был равен 90°. АМ перпендикулярен BN.

АВN = ∆ AMD по двум катетам ( АВ = АD - стороны квадрата , АN = MD - по условию ).

В равных треугольниках соответственно равные элементы => угол АВN = угол МАD ; угол ВNA = угол AMD

Значит, угол FAN + угол FNA = 90° =>
АМ перпендикулярен BN.

Б) Рассмотрим ∆ АМD :
По теореме Пифагора:

АМ² = АD² + MD² = 10² + 5² = 100 + 25 = 125
AM = 5√5

В ∆ FNA : cos FAN = AF / AN

В ∆ АМD : cos МАD = AD / AM

cos FAN = cos MAD = AF / AN = AD / AM =>

AF = ( AN × AD ) / AM = 5 × 10 / 5√5 = 10/ √5 = 2√5

FM = AM - AF = 5√5 - 2√5 = 3√5

FM / AF = 3√5 / 2√5 = 1,5

Из этого следует, что FM = 1,5 × AF , что и требовалось доказать
Изобразите на клетчатой бумаге квадрат abcd со сторонами в 10 шагов сетки пусть m середина cd, n сер
Изобразите на клетчатой бумаге квадрат abcd со сторонами в 10 шагов сетки пусть m середина cd, n сер
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия