Из точки а к окружности проведена касательная ат и секущая, пересекающая окружности в точках е и м. мт - диаметр окружности. ат=6, ае=2, ме=10. а)найти радиус окружности. б)найти угол ате

angelochekbobi angelochekbobi    1   05.09.2019 01:50    1

Ответы
SpawNis SpawNis  16.08.2020 09:47
Радиус проведенный в точку касания перпендикулярен касательной, т.е.
<ATM = 90°. Тогда треугольник ATM - прямоугольный.
По теореме Пифагора найдем ТМ (по условию ТМ - это диаметр окружности).
AM² = AT² + TM²
AM = AE+ME = 2+ 10 = 12.
TM² = AM² - AT² = 12² - 6² = 6²·2² - 6² = 6²·(4-1) = 3*6²,
TM = √(3*6²) = 6*√3.
Искомый радиус равен половине диаметра ТМ.
R = TM/2 = (6*√3)/2 = 3*√3.
Угол между касательной и секущей, проходящей через точку касания, равен половине отсекаемой дуги окружности.
<ATE = (1/2)*дуги_ТЕ,
Но также и вписанный <EMT = (1/2)*дуги_TE,
Тогда <ATE=<EMT=<AMT
Из прямоугольного треугольника ATM
sin(<AMT) = AT/AM = 6/12 = 1/2.
<AMT = arcsin(1/2) = 30° = <ATE.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия