Из произвольной точки м катета ас прямоугольного треугольника авс опущен перпендикуляр мк на гипотенузу ав. докажите, что угол мкс=углу мвс.

MissVika2007 MissVika2007    3   15.06.2019 08:40    2

Ответы
еккаа еккаа  12.07.2020 14:50
По условию МК-перпендикуляр, значит < АКМ = < ВКМ =90°, также < ВСА=90°. Если рассмотреть четырехугольник ВСМК, то в нем сумма противоположных углов < ВСМ + < ВКМ=90+90=180°, и другие противоположные углы < КВС + < КМС=360-180=180° (сумма углов четырехугольника равна 360°). Следовательно этот четырехугольник можно вписать в окружность (суммы его противоположных углов равны 180°). Углы МКС и МВС являются вписанными в окружность и опирающимися на одну дугу МС, значит эти углы равны.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия