Из концов диаметра ab окружности опущены перпендикуляры аа1 и вв1 на касательную. доказать, что точка касания с является серединой отрезка а1в1

rassvetmoydrug rassvetmoydrug    1   09.03.2019 04:50    0

Ответы
Сашалажа Сашалажа  24.05.2020 09:31

Из центра О окружноси проведем радиус ОК в точку касания К. По т. "Радиус проведенный в точку касания - перпендикулярен касотельной", следовательно имеем 3 перпендикуляра к одной прямой, а по теореме они параллельны между собой. Cледовательно АА1В1В - трапеция, а так как О-середина АВ, то ОК- средняя линия этой трапеции и значит точка К - серединаА1В1

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия