Хорда нижнего основания цилиндра отсекает от окружности основания дугу в 120 градусов. отрезок,соединяющий центр верхнего основания с серединой данной хорды,равен 4 корня из 2 см и образует с плоскостью основания угол 45 градусов. найдите площадь осевого сечения цилиндра
О - центр нижнего основания,
АО перпендикуляр к плоскости нижнего основания, ОН - проекция АН на основание, значит ∠АНО = 45°.
ΔАНО: ∠АОН = 90°, АН = 4√2 см\, ∠АНО = 45°, ⇒ ∠НАО = 45°, ⇒ АО = ОН = х
по теореме Пифагора
x² + x² = (4√2)²
2x² = 32
x² = 16
x = 4 (- 4 не подходит по смыслу задачи)
АО = ОН = 4 см
В треугольнике ОВС ОН - медиана и высота (ОВ = ОС как радиусы),
∠ОВС = ∠ОСВ = (180° - 120°)/2 = 60°/2 = 30°
ΔОВН: ∠ОНВ = 90°, ∠ОВН = 30°, ОН = 4 см, ⇒ ОВ = 8 см
Осевое сечение цилиндра - прямоугольник, одна сторона которого равна диаметру основания, а другая - высоте цилиндра.
S = 2·OB·AO = 2 · 8 · 4 = 64 см²