Гипотеза
В любом равностороннем треугольнике сумма расстояний от произвольно выбранной внутренней точки до сторон треугольника равна высоте треугольника.
trijsturis12.jpg
Доказательство гипотезы
1. Нарисуй на листе равносторонний треугольник.
2. Отложи внутри треугольника точку, соедини её с вершинами треугольника.
Этим данный треугольник разделён на (напиши числом)
3
треугольника.
3. Проведи расстояния от точки до сторон треугольника.
В каждом из новых треугольников это расстояние — (слово начинается на букву «в»)
верное
.
4. Напиши формулу площади для всех трёх полученных треугольников.
Беря во внимание имеющиеся на чертеже элементы, какую формулу площади используем?
p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√
a⋅ha2
a⋅b⋅sinγ2
a23–√4
5. Сложи площади трёх треугольников, вынеси за скобки общий множитель.
За скобки можно вынести число, которое обозначает
сторону треугольника
высоту
6. Напиши формулу площади данного треугольника.
Закончи доказательство самостоятельно, сравни свои выводы с гипотезой.