1) сторона ВС треугольника АВС равна стороне СК треугольника МКС - согласно условию;
2) угол ВСА треугольника АВС, прилежащий к стороне ВС, равен углу МСК, прилежащему как стороне СК треугольника МКС , - как углы вертикальные;
3) угол В, прилежащий к стороне ВС треугольника АВС, равен углу К прилежащему как стороне СК треугольника МКС - согласно условию.
Если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Следовательно, ΔАВС = ΔМКС, - что и требовалось доказать.
См. Объяснение
Объяснение:
Треугольник АВС равен треугольнику МКС, так как:
1) сторона ВС треугольника АВС равна стороне СК треугольника МКС - согласно условию;
2) угол ВСА треугольника АВС, прилежащий к стороне ВС, равен углу МСК, прилежащему как стороне СК треугольника МКС , - как углы вертикальные;
3) угол В, прилежащий к стороне ВС треугольника АВС, равен углу К прилежащему как стороне СК треугольника МКС - согласно условию.
Если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Следовательно, ΔАВС = ΔМКС, - что и требовалось доказать.