ГЕОМЕТРИЯ Даны шесть отрезков длиной 2см; шесть отрезков длиной 10см; шесть отрезков длиной 11см. С использованием нескольких этих отрезков сконструирована треугольная прямая призма. Рёбра, которой построены из одного отрезка выбранной длины. Вычисли максимальный возможный объём этой призмы.
Объяснение:
1. вариант решения.
Максимальнo возможный объём будет у правильной призмы. Объём правильной призмы можно вычислить по формуле V=a2⋅3√4⋅H
Так как доступны шесть отрезков каждого вида, то сторона основания правильной призмы не может быть равна боковому ребру.
Очевидно, что a>b>0⇒a2⋅b>b2⋅a.
Соответственно, максимальнo возможный объём будет, если длина стороны основания правильной призмы будет равна длине наибольшего отрезка, а длина высоты призмы будет равна длине второго по величине отрезка.
Максимальный возможный объём призмы будет равен V(max)=102⋅3√4⋅8≈346,41см3
2. Вариант решения
Метод полного перебора.
Используя данные отрезки, треугольную прямую призму можно конструировать
Стороны основания равны 5см; 5см; 5см;
боковое ребро равно 8см; площадь основания равна 32⋅3√4см2; объём призмы равен 32⋅3√4⋅8≈74,45см3.
Подобным образом нужно рассмотреть остальные четырнадцать вариантов. Рассмотрев и сравнив полученные результаты, можно легко заметить, что максимально возможному объему соответствует призма со сторонами основания 10 см; 10 см; 10 см и высотой 8 см.
Максимальный возможный объём призмы будет равен V(max)=102⋅3√4⋅8≈346,41см3