Две стороны треугольника равны 12 см и 6 см, а косинус угла между ними равен v5/3. Найдите площадь этого треугольника.
Задание 2 ( ).
В треугольнике ABC проведена высота BD, равная 12 см. Найдите площадь треугольника ABC, если ∠ABD = 30°, ∠BCD = 45°.
Задание 3 ( ).
Три окружности попарно касаются друг друга. Радиусы окружностей равны 3 см, 8 см, 22 см. Найдите площадь треугольника, вершинами которого являются центры этих окружностей.
Задание 4 ( ).
Площадь треугольника ABC равна 48 см2. На стороне AC отметили точку N так, что AN : NC = 1 : 5. Найдите площадь треугольника NBC.
Задание 5.
В равнобедренном треугольнике ABC основание AC = 12 см. BM – медиана, равная 8 см. Найдите:
а) радиус вписанной окружности ( );
б) радиус описанной окружности ( ).