Два равнобедренных треугольника abc и abd с общим основанием ab расположены так, что точка c не лежит в плоскости abd. определите взаимное расположение прямых, содержащих медианы треугольника, проведённых к сторонам bc и bd. 1) они параллельны; 2) скрещваются; 3) пересекаются можно ответ с решением, , !

iZANAVESKAi iZANAVESKAi    3   09.09.2019 10:10    40

Ответы
nicorobincom nicorobincom  01.09.2020 10:47

ответ: Данные прямые пересекаются.

Объяснение:

  Пусть К - середина BD, М - середина ВС.  

Прямые АК и АМ имеют ОДНУ общую точку А. Следовательно,  они пересекаются, т.к. параллельные и скрещивающиеся прямые общих точек не имеют.  


Два равнобедренных треугольника abc и abd с общим основанием ab расположены так, что точка c не лежи
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия