два кути паралелограма відносяться як 2:3 Знайдіть кут між висотами паралелограма провединими з вершини тупого кута ​


два кути паралелограма відносяться як 2:3 Знайдіть кут між висотами паралелограма провединими з верш

svitlanaholenkp0an3s svitlanaholenkp0an3s    2   19.10.2020 09:42    10

Ответы
leski leski  18.11.2020 09:42

Объяснение:

Пусть а - острый угол параллелограмма.

Тогда искомый угол между высотами

параллелограмма, пущенными из острого угла, равен 180° - а.

Т.к. углы относятся как 2:3, а их сумма

равна 180°, то из уравнения

2х+3х=180

5х=180

х=36

находим острый угол а = 2*36=72

Значит, 180° - 72° = 108° - наш естественный ответ

(P.s: я Казах, но ели как понял это вопрос:))

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия