Пусть S - площадь треугольника АВС. Примем сторону АВ за основание треугольника и проведем высоту СН. Докажем чтоS = 1/2*АВ*СНДостроим треугольник АВС до параллелограма АВDС так, как показано на рисунке. Треугольники АВС и BCD равны по трем сторонам (BC - их общая сторона, АВ = CD и АС = BD как противоположные стороны параллелограма ABCD), поэтому их площади равны. Следовательно, площадь S треугольника АВС равна половине площади параллелограма ABCD, т.е.S = 1/2*AB*CHТеорема доказана. Следствие 1 : Площадь прямоугольного треугольника равна половине произведения катетов Следствие 2 : Если высоты двух треугольников равны, то их площади относятся как основания.