Для доказательства равенства треугольников ДЕС и ДКС мы можем использовать свойства треугольников и показать, что все их стороны и углы равны.
1. Сначала посмотрим на стороны треугольников:
Сторона ДЕ и сторона ДК - это отрезок ДС, они обе равны, так как они являются боковыми сторонами одного и того же угла.
Сторона ЧС - это общая сторона треугольников, поэтому она также равна.
2. Затем рассмотрим углы треугольников:
Угол Е равен углу К, так как они являются вертикальными углами (определение вертикальных углов).
Угол Д равен углу С, так как они являются взаимно дополнительными углами (определение взаимно дополняющих углов).
Исходя из вышеуказанных свойств, все стороны и углы треугольников ДЕС и ДКС равны. Следовательно, треугольники ДЕС и ДКС равны.
На картинке приведены две фигуры, треугольник ДЕС и треугольник ДКС. Чтобы показать, что они равны, мы используем свойства треугольников, которые подтверждают равенство их сторон и углов. Это позволяет заключить, что треугольники равны.
ЕД=КД Д-общий ЕК=КС по 1 признаку равны
Объяснение:
1. Сначала посмотрим на стороны треугольников:
Сторона ДЕ и сторона ДК - это отрезок ДС, они обе равны, так как они являются боковыми сторонами одного и того же угла.
Сторона ЧС - это общая сторона треугольников, поэтому она также равна.
2. Затем рассмотрим углы треугольников:
Угол Е равен углу К, так как они являются вертикальными углами (определение вертикальных углов).
Угол Д равен углу С, так как они являются взаимно дополнительными углами (определение взаимно дополняющих углов).
Исходя из вышеуказанных свойств, все стороны и углы треугольников ДЕС и ДКС равны. Следовательно, треугольники ДЕС и ДКС равны.
На картинке приведены две фигуры, треугольник ДЕС и треугольник ДКС. Чтобы показать, что они равны, мы используем свойства треугольников, которые подтверждают равенство их сторон и углов. Это позволяет заключить, что треугольники равны.