Докажите что сумма медиан треугольника меньше его периметра

Nataliya49017 Nataliya49017    2   20.09.2019 15:00    1

Ответы
Selid Selid  08.10.2020 04:54
Отложим на продолжении медианы AM за точку M отрезок MA1, равный AM. Тогда ABA1C — параллелограмм (см рисунок)
Поэтому
BA1 = AC, 2AM = AA1 < AB + BA1 = AB + AC

Отсюда следует, что AM < 1/2(AB + BC).
Аналогично докажем, что
BN < 1/2(AB + BC),
CK < 1/2(AC + BC).
Сложив почленно эти три неравенства, получим:
AM + BN + CK < AB + BC + AC.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия