Докажите что площадь равностороннего треугольника вычисляется по формуле s равно а квадрат корень из трех деленное на 4 где а сторона треугольника найдите площадь равностороннего треугольника если его сторона равна 5 сантиметров

ruba35 ruba35    1   12.07.2019 12:20    1

Ответы
LerikKerik123 LerikKerik123  18.09.2020 12:01
Решение: 1)Рассмотрим равносторонний треугольник ABC со сторонами, равными a. Проведем высоту BH. Эта высота будет являться одновременно и медианой, и высотой (из свойств равнобедренного треугольника. Они справедливы и для равностороннего). Мы получим два равных прямоугольных треугольников (по трем сторонам). Чтобы найти BH, воспользуемся теоремой Пифагора. BH = sqrt(a^2-(a/2)^2)=sqrt(3a^2/4)=a*sqrt(3)/2 А далее воспользуемся формулой нахождения площади треугольника: оно равно полупроизведению основания на высоту. Высоту знаем, основание дано по условию. Вот и пишем: S = 1/2*a*a*sqrt(3)/2=a^2*sqrt(3)/4, что и требовалось доказать. 2) Вместо a подставляем 5: S = 25*sqrt(3)/4 S = 6.25*sqrt(3) см^2 ответ: 6.25*sqrt(3) см^2 P.S. извиняйте, что чертежа нет, ибо в ответе я почему-то не могу прикрепить вложения. sqrt() - корень квадратный.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия