Докажите, что если биссектриса внешнего угла с вершиной а треугольника авс не параллельна стороне треугольника, то ав≠ас. заранее ( к решению приложите рисунок)
Доказываем от противного. Пусть биссектриса внешнего угла при вершине А треугольника параллельна стороне ВС. Тогда (и ТОЛЬКО ТОГДА) <B=<EAB как внутренние накрест лежащие при параллельных прямых АЕ (биссектриса внешнего угла DAB) и ВС и секущей АВ. То есть угол В равен половине внешнего угла. Но внешний угол треугольника равен сумме двух других углов, не смежных с ним, следовательно <B=<C и треугольник АВС равнобедренный. АВ=АС. Если же биссектриса внешнего угла не параллельна стороне ВС, то равенство углов В и С нарушается и стороны АВ и АС не равны. Что и требовалось доказать.
Если же биссектриса внешнего угла не параллельна стороне ВС, то равенство углов В и С нарушается и стороны АВ и АС не равны. Что и требовалось доказать.