Докажите что: 1) если все вершины четырехугольника abcd лежат в одной плоскости, если его диагонали ac и bd пересекаются 2) вычислите площадь четырехугольника если ас перпендикулярна вd, ас = 10 см, вd = 12 см.

SkrepllexNormaN SkrepllexNormaN    2   05.08.2019 14:10    82

Ответы
sapro95 sapro95  03.10.2020 23:31

1) Первый пункт задачи должен быть сформулирован так:


докажите, что все вершины четырехугольника АВСD лежат в одной плоскости, если его диагонали АС и ВD пересекаются.


Воспользуемся теоремой: через две пересекающиеся прямые можно провести плоскость и при том только одну.


Даны две пересекающиеся прямые АС и ВD. Проходящую через них плоскость обозначим α.


Прямая АС лежит в плоскости α, значит А∈α и В∈α.

Прямая ВD лежит в плоскости α, значит В∈α и D∈α.


Точки А, В, С, D принадлежат плоскости α, т.е. все вершины четырехугольника АВСD принадлежат плоскости α.

Что и требовалось доказать.


2) Рисунок к задаче прикреплен. Дан четырехугольник, у которого диагонали взаимно перпендикулярны и известны длины этих диагоналей (смотри рисунок).


Воспользуемся формулой для вычисления площади четырехугольника по двум диагоналям и углу между ними.


S=\frac{1}{2}d_1*d_2*sin\alpha, где d_1, d_2 – диагонали четырехугольника, \alpha – угол между диагоналями.


S=\frac{1}{2}d_1*d_2*sin\alpha=\frac{1}{2}*AC*BD*sin90^o=\frac{1}{2}*10*12*sin90^o=\\ \\=\frac{1}{2}*10*12*1=60


ответ: площадь АВСD равна 60 см².


Докажите что: 1) если все вершины четырехугольника abcd лежат в одной плоскости, если его диагонали
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия