Доказать или опровергнуть утверждение. если прямая перпендикулярна к плоскости, то она перпендикулярна к любой прямой лежащей в ней.

OlegJexLP OlegJexLP    2   03.09.2019 06:40    1

Ответы
жека596 жека596  06.10.2020 14:07
Пойдем от противного.
То есть, пусть прямая а не перпендикулярна хотя бы одной прямой b, лежащей в плоскости.
Прямая b, лежащая в плоскости - параллельна плоскости, то есть она находится к плоскости под углом 0 градусов.
Поскольку прямая а не перпендикулярна прямой b, лежащей в плоскости, то прямая а находится под углом к прямой b таким, который не равен 90 градусов. Обозначим этот угол как с.
Поскольку прямая b лежит под углом 0 к плоскости, то прямая а лежит под углом с к плоскости, причем с не равен 90 градусов. А по условию, прямая b лежит под углом 90 градусов. Получили противоречие, которое доказывает свойство.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия