До площини квадрата abcd проведений перпендикуляр bm довжиною 4 дм,ab=2 дм, знайти відстань від точки m до вершин квадрата

FrozeFre FrozeFre    1   25.02.2022 14:32    1

Ответы
Lora20060 Lora20060  25.02.2022 14:40

d(М, АВ) = d(M, BC) = 4 дм

d(M, AD) = d(M, СD) = 2√5 дм

d(M, BD) = 4 дм

d(M, AC) = 3√2 дм

Объяснение:

Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к этой прямой.

МВ - перпендикуляр к плоскости квадрата, а значит, и к любой прямой, лежащей в этой плоскости.

МВ⊥АВ, значит расстояние от точки М до прямой АВ

d(М, АВ) = МВ = 4 дм

МВ⊥ВС, значит

d(M, BC) = MB = 4 дм

МВ⊥BD, значит

d(M, BD) = MB = 4 дм

BA⊥AD как стороны квадрата,

ВА - проекция МА на плоскость, значит МА⊥AD по теореме о трех перпендикулярах, тогда

d(M, AD) = MA

Аналогично, ВС⊥CD как стороны квадрата, ВС - проекция МС на плоскость, значит МС⊥CD по теореме о трех перпендикулярах, тогда

d(M, СD) = MС

Если равны проекции наклонных, проведенных из одной точки, то равны и сами наклонные:

ВС = ВА (стороны квадрата), значит МС = МА.

Из прямоугольного треугольника АВМ по теореме Пифагора:

МА = √(АВ² + ВМ²) = √(4 + 16) = √20 = 2√5 дм

Итак,

d(M, AD) = d(M, СD) = 2√5 дм

Осталось найти расстояние от М до диагонали АС.

ВО⊥АС по свойству диагоналей квадрата,

ВО - проекция МО на плоскость квадрата, значит

МО⊥АС по теореме о трех перпендикулярах.

d(M, AC) = MO

BD = AB√2 =2√2 дм как диагональ квадрата,

BО = BD/2 = √2 дм (диагонали квадрата делятся точкой пересечения пополам)

Из прямоугольного треугольника МВО по теореме Пифагора:

МО = √(ВО² + ВМ²) = √(2 + 16) = √18 = 3√2 дм

d(M, AC) = 3√2 дм


До площини квадрата abcd проведений перпендикуляр bm довжиною 4 дм,ab=2 дм, знайти відстань від точк
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия