Диагонали разбивают выпуклый четырёхугольник на четыре треугольника. Радиусы окружностей, описанных около этих треугольников, одинаковы и равны 10.
Найдите стороны четырёхугольника

tumoannasehko tumoannasehko    3   31.01.2022 00:29    8

Ответы
STEPNOJORSK STEPNOJORSK  31.01.2022 01:00

Пусть рассматривается четырехугольник ABCD, а O -- точка пересечения диагоналей. Заметим, что во-первых, AB = 2r\sin\angle BOA = 2r\sin \angle COD = CD, а во-вторых, AB = 2r\sin\angle BOA = 2r\sin(180^{\circ}-\angle BOA) = 2r\sin \angle BOC = BC, следовательно, AB=BC=CD=AD.

Но тогда такой четырехугольник -- ромб. Поскольку \angle BOC = 90^{\circ}, то BC = 2r = 20, следовательно, все стороны четырехугольника равны 20.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия