Диагонали ac и bd четырёх угольника abcd пересекаются в точке о, ао=18 см, ов=15 см, ос=12 см, od=10 cм. докажите что abcd трапеция

ByGaTiVlAdLeN ByGaTiVlAdLeN    1   14.07.2019 16:00    3

Ответы
снежана1281 снежана1281  30.08.2020 17:49
18/12 = 15/10

AO/OC = BO/OD

∠AOB=∠COD (вертикальные углы равны)

Если угол (∠AOB) одного треугольника равен углу (∠COD) другого треугольника, а стороны, образующие этот угол (AO,OC; BO,OD), пропорциональны в равном отношении, то такие треугольники подобны.

△AOB ~ △COD

∠ABO=∠CDO

Если при пересечении двух прямых (AB; CD) секущей (BD) накрест лежащие углы (∠ABO; ∠CDO) равны, то прямые параллельны.

AB || CD

Из неравенства 18/15 ≠ 10/12 следует, что треугольники AOD и ВОС не подобны, ∠ADO≠∠CBO, AD не параллельна BC.

Трапеция - выпуклый четырёхугольник, у которого две стороны (AB; CD) параллельны, а две другие (AD; BC) не параллельны.

Четырёхугольник ABCD - трапеция.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия