Диагональ трапеции с равными боками перпендикулярна боковой стороне, а основания равны 7 см и 25 см. найдите длину отрезков, на которые диагональ делит высоту трапеции, проведенную из вершины тупого угла?
Пусть равнобокая трапеция АВСD. Высота АН, проведенная из вершины тупого угла С, делит большее основание на отрезки, больший из которых равен полусумме оснований, а меньший - их полуразности. Значит АН=16см, НD=АК=9см. АС перпендикулярна СD, значит высота СН - высота из прямого угла и по ее свойствам равна: СН=√(АН*НD) или СН=12см. Пусть точка Р - точка пересечения высоты ВК с диагональю АС. Тогда треугольник АРК подобен треугольнику АСН с коэффициентом подобия АК/АН=9/16. Тогда РК/СН=9/16, отсюда РК=9*12/16=6и3/4см. ВР=ВК-РК=12-6и3/4 = 5и1/4см. ответ: отрезки 6и3/4; 5и1/4.
Значит АН=16см, НD=АК=9см.
АС перпендикулярна СD, значит высота СН - высота из прямого угла и по ее свойствам равна:
СН=√(АН*НD) или СН=12см.
Пусть точка Р - точка пересечения высоты ВК с диагональю АС.
Тогда треугольник АРК подобен треугольнику АСН с коэффициентом подобия АК/АН=9/16.
Тогда РК/СН=9/16, отсюда РК=9*12/16=6и3/4см.
ВР=ВК-РК=12-6и3/4 = 5и1/4см.
ответ: отрезки 6и3/4; 5и1/4.