Даны вершины треугольника a (2; -1; 0), b (-2; 1; 1), c (2; 2; -1). вычислить его высоту, проведенную из вершины в и косинус внутреннего угла в

vkovbasa99 vkovbasa99    3   11.07.2019 03:00    0

Ответы
Аксинья21 Аксинья21  03.10.2020 00:50
Находим стороны треугольника:
AB= \sqrt{(-2-2)^2+(1+1)^2+(1-0)^2}= \sqrt{21}
AC= \sqrt{(2-2)^2+(2+1)^2+(-1-0)^2}= \sqrt{10}
BC= \sqrt{(-2-2)^2+(1-2)^2+(1+1)^2}= \sqrt{21}
Тогда по формуле Герона площадь треугольника будет равна
S= \sqrt{\left(\sqrt{21}+ \frac{ \sqrt{10}}{2}\right)\left(\frac{ \sqrt{10}}{2}\right)^2\left(\sqrt{21}- \frac{ \sqrt{10}}{2}\right) }= \frac{ \sqrt{10}}{2}\frac{ \sqrt{21-\frac{10}{4}}}{2}=
=\frac{ \sqrt{10}}{2}\frac{ \sqrt{74}}{2}=\frac{ \sqrt{185}}{2}
Высота, проведенная с вершины В равна:
h_B= \frac{2S}{AC} = \frac{ \sqrt{185}}{ \sqrt{10} } = \frac{\sqrt{74}}{2}

По теореме косинусов:
AC^2=AB^2+BC^2-2AB\cdotBC\cdot\cos B
а поскольку AB=BC, то
AC^2=2AB^2(1-\cos B) и \cos B = 1-\frac{AC^2}{2AB^2}=
=1-\frac{10}{42}=\frac{32}{42}=\frac{16}{21}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия