Если i, j и k - векторы, по модулю равные единице и направленные по координатным осям Ox, Oy и Oz, то разложение вектора А по трем координатным осям выражается формулой A=Axi+Ayj+Azk, где Ax, Ay и Az - проекции вектора А на координатные оси Ox, Oy и Oz. Величины Ax, Ay и Az - проекции вектора А на координатные оси - называются координатами вектора. Если вектор А имеет начало в начале координат, а его конец А имеет координаты x, y и z? то тогда его проекции на координатные оси равны координатам его конца: Ax=x; Ay=y; Az=z. В этом случае вектор А называется радиус вектором точки А. Радиус вектор обозначается обыкновенно через r r=xi+yj+zk
A=Axi+Ayj+Azk, где Ax, Ay и Az - проекции вектора А на координатные оси Ox, Oy и Oz.
Величины Ax, Ay и Az - проекции вектора А на координатные оси - называются координатами вектора. Если вектор А имеет начало в начале координат, а его конец А имеет координаты x, y и z? то тогда его проекции на координатные оси равны координатам его конца:
Ax=x; Ay=y; Az=z.
В этом случае вектор А называется радиус вектором точки А. Радиус вектор обозначается обыкновенно через r
r=xi+yj+zk