Даны прямая a и точка M,не лежащая на ней.Постройте прямую,проходящую через точку M и перпендикулярную к прямой a. Решение:
Построим окружность с центром в данной точке M, пересекающую данную прямую a в двух точках, которые обозначим буквами A и B.Затем построим две окружности с центрами A и B,проходящие через точку M.Эти окружности пересекаются в точке M и ещё в одной точке,которую обозначим буквой N.Проведём прямую MN и докажем,что эта прямая-искомая, то есть она перпендикулярна к прямой a.
В самом деле,треугольники AMN и BMN равны по трём сторонам,поэтому ∠1=∠ 2.Отсюда следует,что отрезок MC (C-точка пересечения прямых a и MN)является биссектрисой равнобедренного треугольника AMB, а значит, и высотой.
Таким образом, MN ⊥AB,то есть MN⊥a.
ТОЛЬКО ВАЖНО СДЕЛАТЬ КАК В ТЕТРАДИ, ТО ЕСТЬ ПО ОБЫЧНОМУ (ДАНО,НАЙТИ,РЕШЕНИЕ) НАДО ПРОСТО ОФОРМИТЬ ПРАВИЛЬНО, РЕШЕНИЕ ЕСТЬ.

llamina llamina    2   11.12.2020 02:44    2

Другие вопросы по теме Геометрия