Даны две пересекающиеся прямые. верно ли утверждение, что все прямые, пересекающие данные, лежат в одной плоскости? ответ обоснуйте. блин вопрос жизни и смерти если я два получу то меня из школы выгонят

LUKARIN LUKARIN    1   28.03.2019 09:20    5

Ответы
dashakid1 dashakid1  26.05.2020 23:46

Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P.
Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно.
A принадлежит a -> A принадлежит P
B принадлежит b -> B принадлежит P
-> прямая c лежит в плоскости P

с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и  b лежат с этими прямыми в одной плоскости.

Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.

Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.

Прямая NM не принадлежит плоскости P.

Итак, основной вывод.

Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости.
Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия