Даны два неколлинеарных вектора äи b. Длина вект, а=6см вектора b=3см.

winnikrolikov winnikrolikov    3   30.09.2021 10:17    66

Ответы
denisbutrik denisbutrik  16.01.2024 10:48
Хорошо! Для начала, давай разберемся с тем, что такое вектор и как определить его длину.

Вектор - это математический объект, который имеет направление и длину. Векторы часто используются для описания физических величин, таких как скорость, сила или смещение.

Для определения длины вектора, мы можем использовать теорему Пифагора. Теорема Пифагора утверждает, что в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин двух катетов.

Таким образом, чтобы найти длину вектора, мы должны возвести каждую из его координат в квадрат, сложить результаты и затем извлечь из суммы квадратного корня.

Для данного вопроса у нас есть два неколлинеарных вектора ä и b. Из условия мы знаем, что длина вектора а равна 6 см, а длина вектора b равна 3 см.

Давайте обозначим координаты вектора а как (a₁, a₂) и координаты вектора b как (b₁, b₂).

Теперь мы можем воспользоваться формулой для нахождения длины вектора:

|а| = √(a₁² + a₂²)

Используя это уравнение, мы можем найти длину вектора а:

|а| = √(6² + a₂²)

Поскольку мы знаем, что векторы а и b неколлинеарные, это означает, что они не лежат на одной прямой. Это подразумевает, что координаты вектора а не могут быть пропорциональны координатам вектора b.

Теперь давайте рассмотрим второе условие, что длина вектора b равна 3 см. Используя формулу для нахождения длины вектора, мы можем записать:

|b| = √(b₁² + b₂²)

По условию мы знаем, что |b| = 3 см. Подставляя это значение в уравнение, получаем:

3 = √(b₁² + b₂²)

Таким образом, у нас есть два уравнения:

|a| = √(6² + a₂²)
3 = √(b₁² + b₂²)

Мы можем использовать эти два уравнения, чтобы найти значения a₂, b₁ и b₂ и полностью определить два вектора а и b.

Пусть я решу данный вопрос и предоставлю вам полный ответ.

(Продолжите с расчетами и предоставьте полный ответ, основываясь на предоставленных данных в вопросе.)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия