Дано три зовнішні кути трикутника при різних вершинах. Скільки з них можуть бути гострими?​

ХасекиКуро ХасекиКуро    1   12.02.2021 11:35    0

Ответы
Zenkinadasha Zenkinadasha  12.02.2021 11:40

Відповідь:

Один

Розв’язання:

У трикутника максимально може бути лише один тупий кут. (Два інші будуть гострими, бо сума всіх кутів має бути рівна 180*, а враховуючи, що один із кутів більше 90*, два інші мають бути менші 90*(давати 90* у сумі)).

Значення зовнішнього кута = 180* - значення кута трикутника. Тобто якщо в трикутника при певній вершині кут alpha гострий, то зовнішній кут при цій вершині буде тупим, і відповідно, навпаки: якщо кут alpha тупий, зовнішній кут буде гострим.

Ми з’ясували, що може у трикутника бути лише один тупий кут, а це відповідно означає, що в нього тому може бути лише один гострий зовнішній кут(якщо побудовано по одному біля кодної вершини —> бо теоретично, біля кожної вершини трикутника можна побудувати два зовнішніх кути(всього 6))

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия