Дано, PA и PB касательные, BD диаметр, ∠APB= 55°, дуга ∪CB = 125°. Найдите дугу ∪AB, ∠ DEC , дугу ∪AD, ∠PBD, ∠PAC .
Объяснение:
1) Сумма углов четырехугольника АОВР равна 360°.Тк РА и РВ касательные , то ∠ОАР=∠ОВР=90° ⇒ ∠АОВ=360°-2*90°-55°=125°
По свойству центрального угла ∠АОВ=∪АВ=125° .
2)∠ДЕС=(∪АВ+∪СД):2 по свойству угла, образованного пересекающимися хордами.
ДВ-диаметр ⇒ ∪ВД=180° ⇒ ∪СД=180°-125°=55° , ∠ДЕС=(125°+55°):2=90°.
3) ∠РВД=90° , тк РВ-касательная.
4) ∠РАС=∠РАО+∠АОД
∠АОД=180-∠АОВ по т о смежных углах, ∠АОД=55°.
∠РАС=90°+55°=145°.
Свойство угла , образованного пересекающимися хордами : "Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами."
Дано, PA и PB касательные, BD диаметр, ∠APB= 55°, дуга ∪CB = 125°. Найдите дугу ∪AB, ∠ DEC , дугу ∪AD, ∠PBD, ∠PAC .
Объяснение:
1) Сумма углов четырехугольника АОВР равна 360°.Тк РА и РВ касательные , то ∠ОАР=∠ОВР=90° ⇒ ∠АОВ=360°-2*90°-55°=125°
По свойству центрального угла ∠АОВ=∪АВ=125° .
2)∠ДЕС=(∪АВ+∪СД):2 по свойству угла, образованного пересекающимися хордами.
ДВ-диаметр ⇒ ∪ВД=180° ⇒ ∪СД=180°-125°=55° , ∠ДЕС=(125°+55°):2=90°.
3) ∠РВД=90° , тк РВ-касательная.
4) ∠РАС=∠РАО+∠АОД
∠АОД=180-∠АОВ по т о смежных углах, ∠АОД=55°.
∠РАС=90°+55°=145°.
Свойство угла , образованного пересекающимися хордами : "Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами."