Дано: ABCA1B1C1 - правильная треугольная призма,
S(бок)=150√6,
sina=3/5.
Найти Ѕ(АС1В)


Дано: ABCA1B1C1 - правильная треугольная призма, S(бок)=150√6, sina=3/5. Найти Ѕ(АС1В)

DimaRostovonDon DimaRostovonDon    3   03.06.2020 15:00    20

Ответы
ez0lotareva ez0lotareva  06.08.2020 15:55

ответ: 75 (ед. площади)

Объяснение:  Боковые рёбра правильной призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, ⇒

∆ АВС - правильный.

По одной из формул площади треугольника Ѕ(АС1В)=0,5•АС1•ВС1•sinα

 sinα=3/5 (дано).

Диагонали граней правильной призмы равны. ⇒ АС1=ВС1

На рисунке C1D делит угол пополам - С1D биссектриса ( медиана, высота) равнобедренного треугольника АС1В.

AD=BD

ВС1=BD/sin(BC1D)=BD/sin0,5α

Примем сторону основания равной 2а. Тогда BD=a.

По формуле половины угла sin0,5α=√((1-cosα)/2)

cosα=√(1-sin² α)=√(1-9/25)=4/5

sin0,5α=√((1-4/5):2)=√(1/10)=1/√10

BC1=a:1/√10 BC1=a√10

ВВ1С1С-прямоугольник. ВС1 - его диагональ.

Из ∆ ВСС1 по т.Пифагора СС1=√(BC1²-BC²)=√(10a²-4a²)=a√6

 Из площади боковой поверхности площадь одной боковой грани BC•CC1=(150√6):3=50√6⇒

2a•a√6=50√6

2a²=50 ⇒ a=√(50/2)=5

АС1=ВС1=5√10

Ѕ(АС1В)=0,5•АС1•ВС1•sin(AC1B)=0,5•(5√10)²•3/5=0,5•250•3/5=75 (ед. площади)


Дано: ABCA1B1C1 - правильная треугольная призма, S(бок)=150√6, sina=3/5. Найти Ѕ(АС1В)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия