Данный отрезок имеет концы на двух перпендикулярных плоскостях и составляет с одной из них угол в 30 градусов,а с другой 45 градусо.длина этого отрезка равна а.найти расстояние между основаниями перпендикуляров,опущенных из концов отрезка на линию пересечения плоскостей.
Пусть данный отрезок АВ, плоскости α и β, А∈α, В∈β .
Проведем ВС ⊥ α и АМ ⊥ β. Так как плоскости α и β взаимно перпендикулярны, то С и М лягут на линию их пересечения.
АС - проекция АВ на α,
АМ - проекция АВ на β.
Угол между наклонной и плоскостью - это угол между наклонной и её проекцией на плоскость.
ВС ⊥ плоскости α, следовательно, перпендикулярна любой прямой, проходящей через т.С, ⇒ АС ⊥ ВС.
В ∆ АВС угол С=90°, тогда ВС=АВ•sin30°=a/2.
АМ⊥плоскости β, ⇒ перпендикулярна любой прямой, проходящей через М.
В ∆ АМВ угол АВМ=45°, след. ВМ=АВ•cos45°=(a√2)/2
Из прямоугольного ∆ АМС ( угол М=90°) по т.Пифагора
МС=√(МВ²-АС²)=√[(a√2)/2)² -(a/2)²] ⇒
MC=√(a²/4)=a/2