Дана равнобедренная трапеция abcd с основаниями bc и ad . на стороне ab как на диаметре построена окружность с центром в точке o , касающаяся стороны cd и повторно пересекающая основание ad в точке h. точка q – середина стороны cd. а) докажите, что oqdh – параллелограмм. )найдите ad, если угол вad =75 градусов и bc=1.
OQDH является параллелограммом, так как:
OQ параллельна HD (средняя линия и основание)
OH параллельна QD (соответственные углы равны)
h-?
Обозначим точку касания стороны CD к окружности за F
BC=CF=1
Угол CQO = 75 градусам
Угол OFQ - прямой
Угол FOQ = 15 градусам
Угол BOQ = 75 градусам
Угол BOF = 60 градусам
Угол COF = 30 градусам
ΔCOF - прямой. Катет CF лежит против угла в 30 градусов, следовательно гипотенуза OC равняется его удвоенному значению
OC=2
В треугольнике OCQ из вершины С проведем высоту в точку N.
Угол CON = 45 градусам
Треугольник OCN - прямой равнобедренный, следовательно CN=ON=
CN является высотой трапеции OBCQ, которая подобна трапеции ABCD
BO/BA=CN/h
ответ: .