Дана окружность с цетром о и диаметром ав. вне окружности зята точка м, так что прямые ма и мв пересекают окружность в точках с и d соответственно; ас=сd=bd. докажите, что ас=ов
АС=СD=DB половина окружности разбита на 3 равные части, следовательно угол АСD равен 180:3=60°, а отрезки AO и СО - радиусы, мы получили равносторонний тр-к, аналогично остальные треугольники. Следовательно АС равна радиусу ОВ.
АС=СD=DB половина окружности разбита на 3 равные части, следовательно угол АСD равен 180:3=60°, а отрезки AO и СО - радиусы, мы получили равносторонний тр-к, аналогично остальные треугольники. Следовательно АС равна радиусу ОВ.