Дана окружность с центром O и её диаметры AB и CD.
Определи периметр треугольника AOD, если CB = 5 см, AB = 50 см.
1. Назови свойство радиусов окружности:
все радиусы одной окружности имеют .
2. Назови треугольник, равный треугольнику AOD =.
(Введи с латинской раскладки!)
3. P aod=см.
Рассмотрим ∆АОD и ∆СОВ. ОА = ОВ = СО = OD (радиусы одной окружности), углы СОВ и АOD равны, так как вертикальные, тогда ∆АОD = ∆СОВ по двум сторонам и углу между ними.
CO < CD в два раза, так как радиус меньше диаметра окружности. Поэтому, СО = ОВ = 50 см:2 = 25 см. P∆COB = 25 см+ 25см + 5 см = 55 см = P∆AOD.
1. Все радиусы одной окружности имеют равную длину.
2. AOD = COB.
3. Paod = 55 см.