Дан треугольник со сторонами 5, 12, 13. точка о лежит на большей стороне тр-ка и является центром окружности, касающейся двух других сторон, найдите радиус окружности.

whcxjsg whcxjsg    2   02.03.2019 09:30    1

Ответы
Алахахбар228 Алахахбар228  23.05.2020 21:37

Достаточно заметить, что 5^2 + 12^2 = 13^2, то есть, треугольник является прямоугольным.

 

Тока О лежит на гипотенузе.

 

Вершина при прямом угле, точка О и точки касания окружности и катетов образуют квадрат (так как касательная должна быть перпендикулярна отрезку из центра окружности, проведённому к точке касания).

 

Сторона этого квадрата и будет радиусом окружности. Обозначим длину этой стороны за x. Расстояния от точки О до концов гипотенузы обозначим за y и z.

 

Тогда для двух маленьких треугольников, получившихся  при проведении радиусов к точкам касания, можно записать:

 

(5-x)^2 + x^2 = y^2 - по теореме Пифагора

(12-x)^2 + x^2 = z^2 - по теоерме Пифагора

y+z = 13 - так как y и z вместе дают гипотенузу

 

Решим полученную систему уравнений:

 

1) заменим z на y-13 и исключим 3-е уравнение:

(5-x)^2 + x^2 = y^2

(12-x)^2 + x^2 = (13-y)^2

 

2) раскроем скобки и приведём подобные:

25 - 10x + 2x^2 = y^2

- 24x + 2x^2 = 25 - 26y + y^2

 

3) вычтем второе уравнение из первого и приведём подобные:

25 + 14x = 26y - 25

 

4) Выражаем y:

50 + 14x = 26y

y = (50 + 14x)/26

 

5) Подставляем полученное выражение для y в уравнение 25 - 10x + 2x^2 = y^2:

25 - 10x + 2x^2 = ((50 + 14x)/26)^2

25 - 10x + 2x^2 = (50 + 14x)^2 / 676

16900 - 6760x + 1352x^2 = (50 + 14x)^2 = 2500 + 1400x + 196x^2

1156x^2 - 8160x + 14400 = 0

289x^2 - 2040x + 3600 = 0

(17x)^2 - 2*17*60x + 60^2 = 0

(17x - 60)^2 = 0

17x - 60 = 0

x = 60/17

 

ответ: 60/17 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия