Дан прямоугольный треугольник с гипотенузой 10 и катетом 8 b1.найдите периметр данного треугольника в2.найдите площадь данного треугольника в3.найдите синус меньшего угла треугольника в4.найдите радиус вписанной в треугольник окружности в5.найдите длину медианы,проведенной к гипотенузе
2-й катет ВС = а = √(с² - в²) = √(100-64) = √36 = 6
В1. периметр Р - а + в + с = 10 + 8 + 6 = 24
В2. площадь S = 0.5 a·в = 0,5·8·6 = 24
В3. меньший угол лежит против меньшей стороны, это угол А
sin A =a : c = 6 : 10 = 0.6
В4. радиус вписанной окружности r = S: 0.5P = 24 : 12 = 2
В5. проведём медиану СМ = м. Медиана делит прямоугольный треугольника на два два равных треугольника. Рассмотрим один из них, тр-к СМВ. Он равнобедренный СМ = ВМ, а ВМ = 0,5 АВ = 5, т.к СМ - медиана, поэтому медиана СМ = 5