Дан квадрат abcd. диагональ ac точками m, o, n разделена на четыре равные части. докажите, что mbnd -ромб

Den7373 Den7373    3   30.09.2019 03:40    2

Ответы
onkyyyyyyy onkyyyyyyy  09.10.2020 04:32
Дан квадрат ABCD. Диагональ AC точками M, O, N разделена на четыре равные части. Докажите, что MBND - ромб.

Проведём вторую диагональ BD квадрата ABCD.
По условию AM = MO = ON = NC. Отсюда АО = ОС
Диагонали квадрата равны, взаимно перпендикулярны, и точкой пересечения делятся пополам => AC перпендикулярен BD.
Диагональ BD проходит через середину первой диагонали, то есть через точку О.
Значит, MN перпендикулярен BD
МО = ОN , BO = OD
Диагонали данного четырехугольника ВMDN взаимно перпендикулярны и точкой пересечения делятся пополам. Из этого следует, что четырехугольник ВMDN является ромбом, что и требовалось доказать.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия