Четырехугольник abcd является ромбом, у которого сторона ав=17см, диагональ вd=30см. найдите длину диагонали ас.

elnx elnx    3   10.03.2019 07:10    1

Ответы
Valeria13092004 Valeria13092004  24.05.2020 15:02

В ромбе диагонали в точке пересечения делятся пополам и пересекаются под прямым углом.Пусть АВ сторона ромба, О точка пересечения диагоналей.

АВ=17, BО=15 по т. Пифагора AО^2=17^2-15^2=(17-15)(17+15)=2*32=64

AO=8, AC=16

ПОКАЗАТЬ ОТВЕТЫ
bayan6 bayan6  24.05.2020 15:02

Так как у ромба диагонали пересекаются в точке О(назовёмеё так)⇒делятся пополам и пересекаются под прямым углом,углом 90 градусов.Половина диагонали BD=15см.По теореме Пифагора найдём АО:корень квадратный из 17^2-15^2=8-половина второй диагонали⇒вся диагональ=АО*2=8*2=16 см.

ответ:16 см.

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия