Через точку а проведены касательная ав (в – точка касания) и секущая, которая пересекает окружность в точках p и q. докажите, что ab²= ap*aq.

dbva dbva    1   07.03.2019 16:40    1

Ответы
Емсимася Емсимася  24.05.2020 03:38

пусть О - центр окружности
пусть АВ = а
пусть АР = в
пусть AQ = c
пусть АO = х
пусть ОВ = ОР = ОQ = r
пусть угол РАО = у

по теореме пифагора и по теореме косинусов выразим стороны трех треугольников с общей вершиной А и общей стороной АО
получим 3 уравнения
x² = a² + r²
r²=x² + b²-2xb*cos(y)
r²=x²+c²-2xc*cos(y)

x² = a² + r²
r²=a² + r²+ b²-2xb*cos(y)
r²=a² + r²+c²-2xc*cos(y)

a² + b²=2xb*cos(y)
a² +c²=2xc*cos(y)

(a² + b²)*c=2xbc*cos(y)
(a² +c²)*b=2xbc*cos(y)

(a² +c²)*b=(a² + b²)*c

a²b +c²*b=a²c + b²*c

a²b - a²c = b²*c-c²*b

a²(b - c) = bc(b-c)

a² = bc

AB²= AP*AQ - что и требовалось доказать

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия