Через центр o окружности, вписанной в правильный треугольник со стороной 6 см, к плоскости треугольника проведён перпендикуляр om длинной 3 см. найдите расстояние от точки m до стороны треугольника

arianalady arianalady    1   24.01.2020 18:25    50

Ответы
elenafedorova elenafedorova  11.10.2020 03:01

ответ:2√3 см

Объяснение: а₃=2r√3 ⇒  2r=a₃:√3,  r=a₃:2√3,  r=6:2√3=3:√3= √3.

МО⊥ пл. Δ⇒МО⊥пл.круга,вписанного в Δ ⇒МО⊥ОК, где ОК- радиус, проведённый в точку касания окружности и треугольника.

МК-наклонная к пл.АВСД, ОК- проекция МК на пл.АВСД и МК⊥касательной к окружности,являющейся стороной правильного треугольника ⇒ по теореме о трёх перпендикулярах МК⊥ стороне трегольника⇒МК- кратчайшее расстояние от точки М до стороны треугольника.

Имеем ΔМОК: ∠0=90° ,   МК= √(3²+√3²)=√(9+3)=√12=2√3 (см)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия