ЧЕНЬ Кут при основі рівнобедреноготрикутника дорівнює 30°, айого бічна сторона 4 см. - Знайти радіус кола, описаного навколо цього трикутника

КсенияА2006 КсенияА2006    3   30.05.2023 22:56    0

Ответы
linovanex linovanex  30.05.2023 22:57

Відміть як найкраща відповідь :) БУДЬ ЛАСКА

Объяснение:

Позначимо за $R$ радіус кола, описаного навколо рівнобедреного трикутника з кутом при основі $30^\circ$ і бічною стороною $4$ см.

За теоремою про напівкутий, кут при вершині трикутника дорівнює $180^\circ - 2 \cdot 30^\circ = 120^\circ$.

Поділимо цей трикутник на дві рівні частини, провівши серединний перпендикуляр до основи. Оскільки цей перпендикуляр є висотою, то він проходить через центр описаного кола. Позначимо за $O$ центр описаного кола. Тоді відрізок $OA$ є радіусом кола, де $A$ --- середина основи трикутника.

За теоремою синусів в правильному трикутнику $AOB$ маємо:

$$\frac{AB}{\sin \angle AOB} = 2R,$$

де $AB = 2$ см --- медіана (висота) рівнобедреного трикутника, проведена з вершини під кутом $30^\circ$.

Знайдемо $\sin \angle AOB$. Оскільки кут при вершині трикутника дорівнює $120^\circ$, то кут $\angle AOB$ дорівнює $60^\circ$. За теоремою синусів в рівнобедреному трикутнику $ABC$ з кутом при основі $30^\circ$ і бічною стороною $4$ см маємо:

$$\frac{AB}{\sin 60^\circ} = \frac{BC}{\sin 30^\circ} = 4.$$

Отже, $\sin 60^\circ = \frac{AB}{2R}$ і

$$\frac{AB}{\sin \angle AOB} = \frac{AB}{\sin 60^\circ} = 2R.$$

Підставляючи вираз для $AB$ та отриманий вираз для $\sin 60^\circ$, маємо:

$$\frac{2}{\frac{\sqrt{3}}{2}} = 2R,$$

звідки $R = \boxed{\frac{2\sqrt{3}}{3}}$ см.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия