Большее основание равнобедренной трапеции в три раза больше меньшего основания найти боковую сторону трапеции, если площадь трапеции равна и трапеция описана около окружности
Пусть основания x, 3x. Трапеция описана, тогда суммы длин противоположных сторон равны, сумма боковых сторон x+3x=4x. Трапеция равнобедренная, тогда каждая боковая сторона 4x/2=2x. Опустим высоту из вершины к большему основанию. Получим прямоугольный треугольник с катетом x и гипотенузой 2x. Высоту в этом треугольнике можно найти по теореме Пифагора, h=x*sqrt(2^2-1^2)=x*sqrt(3) Площадь трапеции S = полусумме оснований * высота = (x + 3x)/2 * xsqrt(3) = 2x^2 * sqrt(3) S = 2x^2*sqrt(3)=sqrt(3); 2x^2=1; x=1/sqrt(2) Боковая сторона = 2x = 2/sqrt(2) = sqrt(2)
Трапеция описана, тогда суммы длин противоположных сторон равны, сумма боковых сторон x+3x=4x.
Трапеция равнобедренная, тогда каждая боковая сторона 4x/2=2x.
Опустим высоту из вершины к большему основанию. Получим прямоугольный треугольник с катетом x и гипотенузой 2x.
Высоту в этом треугольнике можно найти по теореме Пифагора, h=x*sqrt(2^2-1^2)=x*sqrt(3)
Площадь трапеции S = полусумме оснований * высота = (x + 3x)/2 * xsqrt(3) = 2x^2 * sqrt(3)
S = 2x^2*sqrt(3)=sqrt(3); 2x^2=1; x=1/sqrt(2)
Боковая сторона = 2x = 2/sqrt(2) = sqrt(2)