Боковые стороны трапеции параллельны плоскости альфа. параллельны ли плоскость альфа и плоскость трапеции? и почему?

AkaNika AkaNika    3   14.06.2019 18:30    4

Ответы
77linnik 77linnik  02.10.2020 02:00
Боковые стороны трапеции лежат на прямых a и b. Эти прямые не параллельны и лежат в одной плоскости, значит, они пересекаются. Тогда через эти прямые можно провести единственную плоскость, обозначим её за β. Плоскость β и будет плоскостью трапеции, так как все 4 вершины трапеции лежат на прямых a и b и лежат в β. 

Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Из того, что прямая a параллельна плоскости α, следует, что в плоскости α существует прямая a', такая, что a || a'. Аналогично, из параллельности b и α следует, что в α существует прямая b', такая, что b || b', При этом a' и b' не совпадают, так как a и b не параллельны.

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Из того, что a || a' и b || b' и того, что a и b пересекаются, следует, что α || β, что и требовалось доказать.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия